Implicit-Explicit Formulations of a Three-Dimensional Nonhydrostatic Unified Model of the Atmosphere (NUMA)
نویسندگان
چکیده
We derive an implicit-explicit (IMEX) formalism for the three-dimensional Euler equations that allow a unified representation of various nonhydrostatic flow regimes, including cloud-resolving and mesoscale (flow in a 3D Cartesian domain) as well as global regimes (flow in spherical geometries). This general IMEX formalism admits numerous types of methods including single-stage multi-step methods (e.g., Adams methods and backward difference formulas) and multi-stage single-step methods (e.g., additive Runge-Kutta methods). The significance of this result is that it allows a numerical model to reuse the same machinery for all classes of time-integration methods described in this work. We also derive two classes of IMEX methods, 1D and 3D, and show that they achieve their expected theoretical rates of convergence regardless of the geometry (e.g., 3D box or sphere) and introduce a new second-order IMEX Runge-Kutta method that performs better than the other second order methods considered. We then compare all the IMEX methods in terms of accuracy and efficiency for two types of geophysical fluid dynamics problems: buoyant convection and inertia-gravity waves. These results show that the high-order time-integration methods yield better efficiency particularly when high levels of accuracy are desired.
منابع مشابه
Next-Generation Global and Mesoscale Atmospheric Models
The long-term goal of this research is to construct a unified global and mesoscale nonhydrostatic numerical weather prediction (NWP) models for the U.S. Navy using new numerical methods specifically designed for modern computer architectures; this unified model is called the Nonhydrostatic Unified Model of the Atmosphere or NUMA. To take full advantage of distributedmemory computers, the global...
متن کاملScalability of Semi-Implicit Time Integrators for Nonhydrostatic Galerkin-based Atmospheric Models on Large Scale Cluster
In this paper we describe the current status of our ongoing effort to optimize the efficiency of a novel application package for Nonhydrostatic Unified Model of the Atmosphere (NUMA) when running on large cluster architectures. The linear solver within a distributed memory paradigm is critical for overall model efficiency. The goal of this work-in-progress is to investigate the scalability of t...
متن کاملSemi-Implicit Formulations of the Navier--Stokes Equations: Application to Nonhydrostatic Atmospheric Modeling
We present semi-implicit (IMEX) formulations of the compressible Navier-Stokes equations (NSE) for applications in nonhydrostatic atmospheric modeling. The compressible NSE in nonhydrostatic atmospheric modeling include buoyancy terms that require special handling if one wishes to extract the Schur complement form of the linear implicit problem. We present results for five different forms of th...
متن کاملMeasuring the Effectiveness of Explicit and Implicit Instruction through Explicit and Implicit Measures
Many studies have examined the effect of different approaches to teaching grammar including explicit and implicit instruction. However, research in this area is limited in a number of respects. One such limitation pertains to the issue of construct validity of the measures, i.e. the knowledge developed through implicit instruction has been measured through instruments which favor th...
متن کاملEvaluating the Effectiveness of Explicit and Implicit Form-Focused Instruction on Explicit and Implicit Knowledge of EFL Learners
Although explicit and implicit knowledge of language learners are essential to theoretical and pedagogical debates in second language acquisition (SLA), little research has addressed the effects of instructional interventions on the two knowledge types (R. Ellis, 2005).This study examined the relative effectiveness of explicit and implicit types of form-focused instruction (FFI) on the acquisit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 35 شماره
صفحات -
تاریخ انتشار 2013